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End effects in falling-ball viscometry 

BY R. r. TANNER 
Dcpartment of Mechanical Engineering, University of Sydney 

(Received 3 September 1962 and in revised form 14 January 1963) 

A calculation taking into account the interaction of tube wall and ends with a 
falling sphere is presented, with a view to assessing the change in drag on the 
sphere due to the end proximity in practical viscometry. It is shown that when 
the sphere is more than one fall tube radius from the closed end, the extra drag 
resulting is less than 4.5 x 10-3 of the Faxen drag, and is therefore usually 
negligible. 

For smaller end-sphere distances the end-effect drag increases rapidly, reaching 
about 1.5 of the Faxen drag when the sphere centre is 0.25 tube radius from the 
end. The drag curve lies substantially below that given by Ladenburg (1907). 
Satisfactory agreement with experiment is found. It is concluded that with the 
commonly used types of fall tubes, end effects due to a closed end and an open 
surface will not be detectable. 

1. Introduction 
In  many cases high viscosities ( > 10 poise) may be most conveniently mea- 

sured by the falling-ball technique. As the fluid becomes more viscous, so it 
becomes a more convenient method compared with capillary tube viscometry, 
especially in laboratories where highly viscous liquids are only occasionally dealt 
with. In  practical measurements, various corrections for departures from Stokes’s 
law for an unbounded fluid have to be applied. Of these, the Faxkn (1923) 
correction for the extra drag due to the proximity of the fall-tube walls is well 
known to be accurate, and is recommended for use by standard handbooks 
(British Standards Institution 1957) on viscometry. It may be recalled that 
the total drag D of a sphere (radius a )  falling axially at  speed U in fluid of 
viscosity ?I,  and enclosed in an infinitely long tube of radius R,, is given by 

D = Ds[l +2*1048a/Ro+O(a3/R~)], ( 1 )  

where D, = 67ryaU is the Stokes drag and the other terms in (1) represent the 
Faxen correction in Stokes’s flow (zero Reynolds number); inertia is ignored in 
the present paper. However, the F a x h  correction applies to an infinitely long 
tube, and it is clear that the presence of a fixed closed end (or an open end) will 
also affect the drag on the sphere. Merrington (1949) states that the correction 
for finite tube length is ‘probably negligible’. This is in accordance with the 
account of Barr (1931), who suggests that the end correction tends to vanish when 
the distance of the ball from the end is comparable to the fall tube radius, and at  
variance with Ladenburg’s (1907) calculation. Ladenburg (1907), using a calcula- 
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tion of Lorentz (1907), valid for a sphere approaching an infinite plane surface, 
suggested that the ends increased the average resistance over the central qE of 
the tube in the ratio (1  + 3-3aiL) : 1, where L is the tube length. Since this amounts 
to an increase of several per cent for a typical practical arrangement, and no such 
increase is noted, it is known to be much too large. For the configuration to which 
it applies, the Lorentz formula is known to give reasonable agreement with 
experiment (Altrichter & Lustig 1937), but it does not apply to end effects in 
falling-sphere viscometry. A calculation which obtains a result similar to those 
of Lorentz (1907) and Ladenburg (1907) has recently been published by Maude 
(1961). Again, no account is taken of the interaction between tube walls and ends, 
although Brenner (1961) has pointed out its importance. Hence no realistic 
calculation of the magnitude of end effects in practical viscometry is known to 
the author. An attempt to fill this gap is presented here. 

The method adopted is the classical ‘method of reflexions’ developed by 
Lorentz (1907). It is necessary to evaluate the velocities in the F a x h  solution in 
the plane of the cylinder ends. Then a solution of the creeping flow equations with 
zero velocity over the cylindrical wall and velocities which are the negative of the 
‘unsatisfied ’ velocities on the ends must be found. Addition of this velocity field 
will result in zero boundary velocities over the entire cylinder. The resulting 
drag increment from this additional reflexion may be estimated using the Faxen 
(1923)-PBr&s (1929) method. Using this, it is only necessary to estimate the 
reflected velocity v(3) a t  the sphere centre; the drag increment is then 67rqav13). 
This is correct as far as terms in a/Ro or a/Z (where 2 is the end-sphere distance) 
whichever is larger; higher-order terms are not considered. The paper concludes 
with a discussion of end effects in practical situations. 

2. General approach and boundary conditions 
The method of reflexions successively approximates to the true solution of the 

sphere in the tube problem by satisfying boundary conditions at the sphere and 
the tube wall alternately. Each successive reflexion cancels out the unsatisfied 
velocity component on one solid surface and thereby reduces the velocity there to 
zero, introducing a reflected error at  the other solid surface. Thus a gradual 
approach to the true velocity field v is obtained, giving v = v(O)+ v(l) + v(z) + . . . as 
the sum of the reflected fields. If R and 2 are cylindrical polar co-ordinates, and 
i,, i, are corresponding unit vectors, then the field $0) is simply - Ui,. On the 
assumption that the fluid boundaries are sufficiently distant from the sphere 
centre, so that terms of order a3ir3 may be neglected in comparison with air ( r  is 
the radial distance from the sphere centre) on the boundaries, the field vC1) may 
be taken as a ‘Stokeslet’ flow: 

v(l) = $U{2(a/R) i,- aV(Z/R)}, (2) 

The field $”is given in integral form by Brenner & Happel (1958) for an infinitely 
long tube. If solid ends are now considered, t,hen a further field VC3) is needed to 
cancel unsatisfied velocities on the ends; v(3) must not re-introduce velocities on 
the tube walls. 
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The velocity vector v@) for a centrally falling sphere is given by the following 
expression (Brenner & Happel 1958): 

A 

FIQURE 1. Normalized ‘unsatisfied’ velocity profiles for various Z/R,. Here mag. ?$?) 

(see table 1) is the value of zip’ on the tube axis. 

Boundary conditions given in the integral form (3) scarcely encourage one to 
look for a wholly analytical solution, so expression (3) was evaluated at  ten 
equi-spaced points on the tube radius for various sphere-end distances Z/Ro. 
A programme was written for the Sydney University SILLIAC computer which 
evaluated d3) = V ( ~ ) + V C ~ )  a t  sphere-end distances of 0.25, 0.5, 0.75, 1.0, 1.5 and 
2.0 tube radii. The Bessel functions Io, Il and I<,, were generated to f3-7 figure 
accuracy (mainly limited by KO)  and K ,  was found from the well-known relation 

(6) 

The integrations were performed using Filon’s (1928) modification of Simpson’s 
rule. Step lengths and upper limits of integration were chosen to give a final 
accuracy of the order of 1 part in lo4 for v ( ~ ) / U .  Results are shown in figure 1, 
where all velocities are referred to the velocity vg) on the tube axis. The curve for 

l o ( % )  K,(x) + I,(x) K,(x) = x-l. 

11-2 
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Z/Ro = 2 is omitted as the integration accuracy for this case is of the same order 
as the velocity magnitudes. 

Table 1 gives the magnitudes of v(z3)Ro/Uu on the tube axis for various ZlR,. 
Extension to higher values of Z/Ro is clearly unnecessary. As a comparison, the 
corresponding velocity for the unbounded Stokeslet flow (equation ( 2 ) )  is also 
given. 

0.25 3.9644 6.0 
0.5 1-1464 3.0 
0.75 0.3854 2.0 
1.0 0.1271 1.5 
1.5 0.0105 1.0 
2.0 0.0004 0.75 

TABLE 1. Maximum axial velocity at various Z/Ro. 

It is seen that the effect of the tube walls is to reduce by very large factors the 
residual velocities remaining to be ‘reflected’ by the ends except for small ZIR,; 
thus we may anticipate that the Ladenburg (1907) result will generaIly be much 
too large. 

As a partial check on the numerical results, the velocity on the axis was 
evaluated analytically. The 2-component of equation (3) with R = 0 may be 
rewritten in the form 

= 91+4,, say, (7) 

where A(h) = AI; - 21, Il - AI;. 

of KO (McLachlan 1955), as 
Consider the first integral 4, in (7). This may be written, using the definition 

+ q m  0 m-1 A d  ; [(&h)Zql+i+)+ Io(h) (in!), ... + l / m ) l  ( c o s g )  dh .  (8)  

The first part of Sl is simply mR0/lZl (121 > 0 )  (Lighthill 1958). The second part is 
analytic in the complex plane except at the zeros of Io(h). It may be shown that 
each term of (8) vanishes on a large semicircular contour in the upper half-plane 
and on using the residue calculus one can express 4l in the form 

where the a, are the roots of Jo(a) = 0;  (,Jo, Yo, and J1 are the Bessel functions of 
the first and second kinds, order zero, and the first kind, order one, respectively). 
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The integral Y2 may also be evaluated using the residue calculus, the result 

where pn are the roots of A = 0 (equation (7)). 
Summing the various expressions (9)) (10) and the 2-component of ( 2 )  finally 

gives 

The roots (p,) of A included within the integration contour in the upper half plane 
are of the form 3- a,+ibn; hence the ip, are complex conjugates of the form 
- b, ia,, and equation (1 1)  is purely real. The first four ip, values are given in 
Appendix 1, table 5; each term contains an exponential decay factor e-bnZ/Ro, so 
for large values of ZIR, only a few terms of the series are needed. Evaluation is 
tedious with existing tables, and it was found that only values for ZIR,, > 1 could 
easily be calculated accurately. The values obtained, 0.0102 (0.0105 computed) 
and 0.0003 (0.0004 computed) for ZIR, = 1.5 and 2.0 respectively, confirm that 
the numerical calculations of velocities are subject to errors in the region of 

To estimate the change in drag, it is only necessary to find the value of v%) 
induced at the sphere centre (P&& 1929) by a flow satisfying the creeping flow 
equations and with velocities - (~(1) + v@)) over the ends and zero on the cylindrical 
surface. 

It is convenient to define all lengths in terms of the tube radius R,, writing 
p = R/R,, x = Z/R,. By using the Stokes stream function (Lamb 1945) $ to 
define 

11, = --, 1 a$ vz = 1 a$ 
ax Pap ' 

the continuity equation is automatically satisfied. The creeping flow equations 
are satisfied if $ is a solution of 

It was decided to find a semi-analytical solution to the problem using a varia- 
tional method. Purely numerical methods such as relaxation (Allen 1954) or 
'squaring' (Thom & Apelt 1961) tend to converge slowly for fourth-order 
equations; on the other hand, the Ritz and Galerkin variational processes often 
produce exceedingly good results with little work for fourth-order equations 
(Krylov & Bantorovitch 1958). A further factor influencing the choice in the 
present instance was computer availability; nearly all the numerical work was 
done by standard routines on SILLIAC without the need to write the large pro- 
gramme necessary for a purely numerical method. In  the Galerkin procedure a 
set of functions which satisfies all the boundary conditions of the problem, but 
not the partial differential equation, is specified. For example, assume that 

$ = 2 Xi. 
i= l  
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In  the present case each xi is assumed to be of the form f i ( x )  g,(p). Here gi(p) is a 
polynomial arranged to satisfy some of the boundary conditions on @ and f i (z )  is 
as yet undetermined. To find the f i ( z )  each xi is made orthogonal to E2@ over the 
region of interest. Here we put 

( i =  1 , 2  ,...) r ) ,  

the integral being taken over the limits p = 0 to 1, z over the whole tube length. 
The results of the single integration with respect to p leaves a set of r ordinary 
differential equations for finding the f i .  Solution of these with appropriate 
boundary conditions produces an approximation to the solution of the original 
partial differential equation. The number of terms taken ( r )  is determined by the 
accuracy required. 

The factor l / p  which has been inserted in (14)  ensures that the Galerkin 
'solution' coincides with the Ritz (1908) variational 'solution'. The Ritz method 
applied to the present case minimizes the total rate of energy dissipation over the 
entire fluid volume (subject to the constraints imposed by the choice of the 
boundary velocities). Helmholtz's theorem (Lamb 1945) shows that the true 
solution of the creeping flow equation (12) with given boundary conditions is 
that giving the least rate of dissipation. Thus when a very large number of terms 
are taken, the Galerkin and Ritz methods converge towards the true solution. 
[It  may readily be shown by the aid of Green's theorem (see Krylov & Kantoro- 
vitch 1958) that the Galerkin 'solution' and that obtained from the same choice 
xi by minimizing the rate of energy dissipation are indeed the same]. In practice, 
with partial differential equations of the type discussed here, it is often found that 
only a few terms are needed to provide a good approximation to the solution. 
Further discussion of the Ritz and Galerkin methods is to be found in the book by 
Krylov & Kantorovitch (1958). 

Assume that the cylinder is semi-infinite in the positive z-direction and that the 
closed end contains the origin. A set of functions xi satisfying the velocity 
boundary conditions on the cylindrical surface is 

Working out the orthogonality integrals (14) gives the following set of equa- 
tions for the f i :  

r 

i = l  
3 (a i id4 /dz4+bi jd2/dx2+ci j ) f i  = 0, (j = 1,  ..., r ) ,  (16) 

where a.nm = 12(m+n-  l ) ! / ( m + n + 4 ) ! ,  

b,, = - 16{6mn- (m+n) mn- 11 (m+n- 2) ! / (m +n  + 3 ) ! ,  

c,, EZ 192mn(mn- l ) ( m + n - - 3 ) ! / ( m + n + 2 ) ! .  

Assuming a solution of the form ehz and solving the equation arising from the 
determinant of the linear equations gives a set of approximate eigenvalues ( A ) ,  
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which compares closely with the true eigenvalues (Appendix). The approximate 
eigenvalues obtained for r = 1,2 ,3  and 4 are: 

r = 1:  & 4.354 k 1.7192'; 

r = 2: & 4.455 k 1.4672'; 5 7.630 & 2.9513; 

Y = 3: i 4.466 5 1.467i; rf: 7.587 5 1.8422'; 5 11.422 k 4.812i; 

r = 4: 5 4-46630 5 1.467472'; k 7.68536 2 1.725455; 

rf: 10.69484 2.505782'; & 15.91534 If: 7.156432'. 

Discarding the solutions with positive real parts (so that the velocities vanish 
as z becomes very large) shows that the f i  must have the form 

T 

f & )  = 2 exp ( -pk z )  {A ik  sin vk z + B,, cos vk z}, 
k = l  

where pk, v, are the magnitudes of the real and imaginary parts, respectively, of 
the lcth eigenvalue. 

Mean percentage error in -- 
No. of Axial Radial 

ZIRO terms, r velocity velocity 

0.25 4 3.4 1.8 
0.5 4 0.12 0.41 
0.76 4 0.37 0.080 
1.0 4 0.045 0.018 
1.5 3 0.20 0.05 

TABLE 2. Accuracy of least-squares fit of boundary conditions. 

Least-squares fitting using the velocity distributions calculated in 3 2 provide 
values of f i (0 )  andfi(0). Hence 21 relations between the A,, and Bi, are obtained 
from equations (17). A further set of relations exist which ensure that the 
equations (17) are solutions of the equations (16), so that a total of 212 linear 
equations is obtained from which the At,  and B,, may be found. Solving for the 
A,, and Bik gives the solution for the f i ( x )  and hence the value of vg) a t  the sphere 
centre. For Z/R, 3 0.5 this process rapidly produced a solution which fitted the 
boundary values of velocity closely. Taking E lerrorl/E I d3)1 as a measure of 
error, this measure reduces by a factor of at least 5 as r increases by one for 
ZIR, 2 0-5. For ZIR, = 0.25, convergence was slower, and 0.5 appears to be 
about the lowest value of ZIR, which can be effectively tackled by the present 
method. The percentage accuracy of fit, judged by the value of 

1 0 c  IerrorI/max. \v(23)1 

(i.e. fitted over 10 points, taking the average value) is given in table 2. The 
decrease of accuracy for small ZIR, is to be noted. 
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3. Results and discussion 
The drag increment as a fraction of the Stokes drag is simply vg)/ U evaluated 

a t  the ball centre.? The sequence of values obtained by taking 1 , 2 , 3  and 4 terms 
in the Galerkin method are given in table 3, together with an extrapolated value 
and an estimate of the accuracy. 

Nuniber of terms, r 
r- 

ZIR, 1 2 3 

0.25 2.247 2.334 2.382 
0.5 0.4 17 0.431 0.444 
0.75 0.0622 0.0704 0.0720 
1.0 0-01180 0.00907 0.00933 
1-5 2.66 x 7.08 x 10-5 7-45 x lop5 

ti($ R, 
Up’ a Elstimated 

- 7 (final accuracy 
4 estimate) (:(,) 

2.460 - 3.0 - + l o  
0.436 0.442 *+ 

+ 1- 0.0725 0.0728 - 2  

0.00938 0,0094 f 1  
7.51 x 7-6 x f 1 

- __ 

TABLE 3. Drag increments ( t$) /Cr)  (Bola) due to closed end. 

The extrapolated values were found using Salzer’s (1954) method for mono- 
tonic sequences. Rapid convergence was obtained except for ZIR, = 0.25. The 
present method is not very effective for this case, and it would probably be more 
economical to restart the calculation from the Lorentz (1907) solution if such low 
values of Z/R, were of interest. 

Figure 2 shows the results for the complete drag curve. The Ladenburg drag 
curve shown is the sum of the Faxen drag and the Lorentz (1907) end-effect 
correction. The latter amounts to a drag increase of #D,(a/Z). The present results 
lie above the Fax& and Lorentz curves taken separately, but well below the 
sum of the two. I n  fact, the sphere drag appears to be little greater than the larger 
of the Faxdn or Lorentz drags. 

A short experimental investigation using a 40 mm diameter fall tube, &in. 
diameter steel balls and a 1000 poise (approx.) silicone fluid was made. The balls 
were timed over successive 5 mm intervals corresponding to ZIR, = . . . , 1, $,&, a, 
several tests being made. The estimated timing accuracy was N 1 %. The ratios 
of average speed over an interval to average speed over an interval a long way 
from the end are compared in table 4. Satisfactory agreement with theory is 
noted. 

For end-sphere distances greater than 1.5R0 no explicit values of the drag 
increment have been found. However, inspection of the solution (18) and the 
magnitude of the unsatisfied boundary velocities (1  1)  suggests that the end- 
effect correction v($)/U may be represented for large values of ZIR, by 

where C(Z/R,) is a slowly varying function, whose magnitude is in the range 
30-80 in the cases examined. Also, for tubes longer than about two diameters, 
it may be readily demonstrated numerically that the two ends will have a 

t The referee has kindly supplied a proof showing that the addition of a rigid wall must 
increase the drag. 
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negligible effect on one another, and the distant end may be ignored. However, 
for shorter tubes reflexions from both ends must be considered. 

Returning to the viscometry problem, it is clear that Barr's (1931) remark (that 
end effects are negligible when the sphere is about one tube radius from the end) 
which is presumably based on observation, is completely justified for closed ends. 

t 
I\ 

' 0-5 1.0 1.5 2-0 2.5 
ZIRO 

FIGURE 2. Drag curves. 

c 

Average ZIR, Speed ratio Speed ratio 
of interval (experiment) (predicted) 

- 3 0.95 0.96 
3 0.99 0.99 
a 1.00 1.00 
1+ 1.00 1.00 

7 

TABLE 4. Comparison of theory and experiment. 

An open end would require the vanishing of stresses at the free surface (Brenner 
1961)) and would involve repeating the calculation with different boundary 
conditions. However, the eigenvalues remain the same as in the closed-end case, 
and hence the same rapid attenuation of the end effect must occur. Hence it is 
clear that the practice of ignoring end effects in viscometry is generally correct; 
in particular, no sensible error will result from this cause when using the fall tubes 
described in B.S.S. 188, 1957. 

Appendix. Comparison of exact and variational eigenvalues 
Elementary solutions of the creeping flow equation (12) finite at the origin are 

where A,, B, 
To satisfy 

one has 

k = {AA h2p2J01,(hp) + B, hpJ,(hp)) ehZ,  (18) 

are constants, and h a parameter. 
the boundary conditions of zero velocity on the cylinder p = 1 

- - 3 = 0 on p = 1, giving the equations 
ap az 

A ,  A2Jo(h) + B, hJ,(h) = 0, 
A,(2hJo - MI} + B,{hJo} = 0. 

(19) 

(20) 
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Hence the equation for the eigenvalues A becomes 

hJi-2Jo J,+AJ: = 0. 

The magnitudes of the first four eigenvalues (after the obvious one h = 0) are 
shown in table 5. They were found by Newton’s method, working with complex 
arithmetic on SILLIAC. Initial guesses were supplied from a preliminary plot of 
the expression (3 1 ) . 

The comparison with the first two Galerkin eigenvalues is excellent. Accuracy 
is limited to 5-6 figures. 

Real part Imaginary part 

No. of Exact 4-term Exact 4-term 
eigenvalue equation Galerkin equation Galerkin 

1 4.46631 4.46630 1.46745 1.46747 
2 7.69410 7.65536 1.72697 1.72545 
3 10.5746 10.6945 1.59494 3.50575 
4 14.0389 15.9153 2.02006 7.15643 

TABLE 5 .  Comparison of eigenvalues. 
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